丞丞聊車小課堂第十七講——整車懸掛系統

懸掛系統就是指由車身與輪胎間的彈簧和避震器組成整個支援系統。懸掛系統應有的功能是支援車身,改善乘坐的感覺,不同的懸掛設定會使駕駛者有不同的駕駛感受。外表看似簡單的懸掛系統綜合多種作用力,決定著轎車的穩定性、舒適性和安全性,是現代轎車十分關鍵的部件之一。

根據控制形式不同分為被動式懸架、主動式懸架。根據汽車導向機構不同可分為獨立懸架、非獨立懸架。

非獨立懸架

非獨立懸架的結構特點是兩側車輪由一根整體式車橋相連,車輪連同車橋一起透過彈性懸架懸掛在車架或車身的下面。非獨立懸架具有結構簡單、成本低、強度高、保養容易、行車中前輪定位變化小的優點,但由於其舒適性及操縱穩定性都較差,在現代轎車中基本上已不再使用,多用在貨車和大客車上。

獨立懸架

獨立懸架是每一側的車輪都是單獨地透過彈性懸架懸掛在車架或車身下面的。其優點是:質量輕,減少了車身受到的衝擊,並提高了車輪的地面附著力;可用剛度小的較軟彈簧,改善汽車的舒適性;可以使發動機位置降低,汽車重心也得到降低,從而提高汽車的行駛穩定性;左右車輪單獨跳動,互不相干,能減小車身的傾斜和震動。不過,獨立懸架存在著結構複雜、成本高、維修不便的缺點。現代轎車大都是採用獨立式懸架,按其結構形式的不同,獨立懸架又可分為橫臂式、縱臂式、多連桿式、燭式以及麥弗遜式懸架等。

橫臂式懸架

橫臂式懸架是指車輪在汽車橫向平面內擺動的獨立懸架,按橫臂數量的多少又分為雙橫臂式和單橫臂式懸架。

單橫臂式具有結構簡單,側傾中心高,有較強的抗側傾能力的優點。但隨著現代汽車速度的提高,側傾中心過高會引起車輪跳動時輪距變化大,輪胎磨損加劇,而且在急轉彎時左右車輪垂直力轉移過大,導致後輪外傾增大,減少了後輪側偏剛度,從而產生高速甩尾的嚴重工況。單橫臂式獨立懸架多應用在後懸架上,但由於不能適應高速行駛的要求,應用不多。

雙橫臂式獨立懸架按上下橫臂是否等長,又分為等長雙橫臂式和不等長雙橫臂式兩種懸架。等長雙橫臂式懸架在車輪上下跳動時,能保持主銷傾角不變,但輪距變化大(與單橫臂式相類似),造成輪胎磨損嚴重,現已很少用。對於不等長雙橫臂式懸架,只要適當選擇、最佳化上下橫臂的長度,並透過合理的佈置、就可以使輪距及前輪定位引數變化均在可接受的限定範圍內,保證汽車具有良好的行駛穩定性。不等長雙橫臂式懸架已廣泛應用在轎車的前後懸架上,部分運動型轎車及賽車的後輪也採用這一懸架結構。

丞丞聊車小課堂第十七講——整車懸掛系統

多連桿式懸架

多連桿式懸架是由(3—5)根杆件組合起來控制車輪的位置變化的懸架。多連桿式能使車輪繞著與汽車縱軸線成二定角度的軸線內擺動,是橫臂式和縱臂式的折中方案,適當地選擇擺臂軸線與汽車縱軸線所成的夾角,可不同程度地獲得橫臂式與縱臂式懸架的優點,能滿足不同的使用效能要求。多連桿式懸架的主要優點是:車輪跳動時輪距和前束的變化很小,不管汽車是在驅動、制動狀態都可以按司機的意圖進行平穩地轉向,其不足之處是汽車高速時有軸擺動現象。

丞丞聊車小課堂第十七講——整車懸掛系統

縱臂式懸架

縱臂式獨立懸架是指車輪在汽車縱向平面內擺動的懸架結構,又分為單縱臂式和雙縱臂式兩種形式。單縱臂式懸架當車輪上下跳動時會使主銷後傾角產生較大的變化,因此單縱臂式懸架不用在轉向輪上。雙縱臂式懸架的兩個擺臂一般做成等長的,形成一個平行四杆結構,這樣,當車輪上下跳動時主銷的後傾角保持不變。雙縱臂式懸架多應用在轉向輪上。

丞丞聊車小課堂第十七講——整車懸掛系統

燭式懸架

燭式懸架的結構特點是車輪沿著剛性地固定在車架上的主銷軸線上下移動。燭式懸架的優點是:當懸架變形時,主銷的定位角不會發生變化,僅是輪距、軸距稍有變化,因此特別有利於汽車的轉向操縱穩定和行駛穩定。但燭式懸架有一個大缺點:就是汽車行駛時的側向力會全部由套在主銷套筒的主銷承受,致使套筒與主銷間的摩擦阻力加大,磨損也較嚴重。燭式懸架現已應用不多。

麥弗遜式懸架

麥弗遜式懸架的車輪也是沿著主銷滑動的懸架,但與燭式懸架不完全相同,它的主銷是可以擺動的,麥弗遜式懸架是擺臂式與燭式懸架的結合。與雙橫臂式懸架相比,麥弗遜式懸架的優點是:結構緊湊,車輪跳動時前輪定位引數變化小,有良好的操縱穩定性,加上由於取消了上橫臂,給發動機及轉向系統的佈置帶來方便;與燭式懸架相比,它的滑柱受到的側向力又有了較大的改善。麥弗遜式懸架多應用在中小型轎車的前懸架上,保時捷911、國產奧迪、桑塔納、夏利、富康等轎車的前懸架均為麥弗遜式獨立懸架。雖然麥弗遜式懸架並不是技術含量最高的懸架結構,但它仍是一種經久耐用的獨立懸架,具有很強的道路適應能力。

丞丞聊車小課堂第十七講——整車懸掛系統

主動懸架

主動懸架是近十幾年發展起來的、由電腦控制的一種新型懸架。它彙集了力學和電子學的技術知識,是一種比較複雜的高技術裝置。例如裝置了主動懸架的法國雪鐵龍桑蒂雅,該車懸架系統的中樞是一個微電腦,懸架上的5種感測器分別向微電腦傳送車速、前輪制動壓力、踏動油門踏板的速度、車身垂直方向的振幅及頻率、轉向盤角度及轉向速度等資料。電腦不斷接收這些資料並與預先設定的臨界值進行比較,選擇相應的懸架狀態。同時,微電腦獨立控制每一隻車輪上的執行元件,透過控制減振器內油壓的變化產生抽動,從而能在任何時候、任何車輪上產生符合要求的懸架運動。因此,桑蒂雅轎車備有多種駕駛模式選擇,駕車者只要扳動位於副儀表板上的“正常”或“運動”按鈕,轎車就會自動設定在最佳的懸架狀態,以求最好的舒適性能。

主動懸架具有控制車身運動的功能。當汽車制動或拐彎時的慣性引起彈簧變形時,主動懸架會產生一個與慣力相對抗的力,減少車身位置的變化。例如德國賓士2000款Cl型跑車,當車輛拐彎時懸架感測器會立即檢測出車身的傾斜和橫向加速度。電腦根據感測器的資訊,與預先設定的臨界值進行比較計算,立即確定在什麼位置上將多大的負載加到懸架上,使車身的傾斜減到最小。

作為車架、車身與車橋、車輪間傳力連線裝置的懸架,會把路面作用於車輪上的力傳遞到車架、車身上。它會與輪胎一起吸收、緩衝路面不平造成的振動與衝擊,但這並不意味著結構越複雜越好,強調空間、不追求極限操控的小型車、緊湊型車使用非獨立懸架無可厚非,而追求操控極限、駕駛樂趣的車型也並非只有多連桿式獨立懸架一種選擇。